Determine the pH of a solution containing 386 mL of 0.7 M acetic acid ($\mathrm{Ka=1.8} \mathrm{\times 10}^{-5}$) and $100 ~$ mL of 1.0 M NaOH

1. Determine the amount of moles of acid and base
$386 \mathrm{~mL} \times(1 \mathrm{~L} / 1000 \mathrm{~mL})=0.386 \mathrm{~L} \quad 0.386 \mathrm{Lx}(0.7 \mathrm{~mol} / 1 \mathrm{~L})=0.270 \mathrm{mols}$ of acetic acid
$100 \mathrm{~mL} \times(1 \mathrm{~L} / 1000 \mathrm{~mL})=0.1 \mathrm{~L} \quad 0.1 \mathrm{Lx}(1.0 \mathrm{~mol} / 1 \mathrm{~L})=0.100 \mathrm{mols}$ of NaOH
2. Determine the limiting reagent

Since the reaction is a one to one ratio, NaOH is the LR because it has the least amount of moles

	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$		
I	0.27 mol	0.1 mol	0
C	-0.1 mol	-0.1 mol	+0.1 mol
E	0.17 mol	0 mol	0.1 mol

3. Determine final concentrations

New volume: $0.386 \mathrm{~L}+0.100 \mathrm{~L}=0.486 \mathrm{~L}$

Concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}: 0.1$ mols / $0.486 \mathrm{~L}=\mathbf{0 . 2 1 M}$
Concentration of $\mathrm{CH}_{3} \mathrm{COOH}: 0.17$ mols $/ 0.486 \mathrm{~L}=\mathbf{0 . 3 5 M}$
4. Determine the pKa from Ka
$-\log \left(1.8 \times 10^{-5}\right)=4.74$
5. Use Henderson-Hasselbach equation
$\mathrm{pH}=\mathrm{pKa}+\log (\mathrm{A}-/ \mathrm{HA})$
$\mathrm{pH}=4.74+\log (0.21 / 0.35)$
$\mathrm{pH}=4.74+(-0.22)$
$\mathrm{pH}=4.52$
*Note: When in a buffer solution, pH should stay within $\mathrm{pKa}+/-1$.
Does this make sense? The concentration of the acid is a little higher than the concentration of the base, therefore the new pH should be lower than the original pH .

$$
4.52 \text { < 4.74. Yes! }
$$

XXX

